Stochastic differential equation models of vortex merging and reconnection
نویسندگان
چکیده
منابع مشابه
Stochastic differential equation models of vortex merging and reconnection
We show that the stochastic differential equation sSDEd model for the merger of two identical two-dimensional vortices proposed by Agullo and Verga f“Exact two vortices solution of Navier– Stokes equation,” Phys. Rev. Lett. 78, 2361 s1997dg is a special case of a more general class of SDE models for N interacting vortex filaments. These toy models include vorticity diffusion via a white noise f...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملStochastic differential equation models in biology
Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential equations. These models assume that the observed dynamics are driven exclusively by internal, deterministic mechanisms. However, real biological systems will always be exposed to influences that are not completely understood or not feasible to model explicitly, and...
متن کاملnumerical solution of heun equation via linear stochastic differential equation
in this paper, we intend to solve special kind of ordinary differential equations which is called heun equations, by converting to a corresponding stochastic differential equation(s.d.e.). so, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this s.d.e. is solved by numerically methods. mo...
متن کاملDifferential Geometry of the Vortex Filament Equation
Differential calculus on the space of asymptotically linear curves is developed. The calculus is applied to the vortex filament equation in its Hamiltonian description. The recursion operator generating the infinite sequence of commuting flows is shown to be hereditary. The system is shown to have a description with a Hamiltonian pair. Master symmetries are found and are applied to deriving an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2005
ISSN: 1070-6631,1089-7666
DOI: 10.1063/1.1932310